منابع مشابه
Stability of quantum breathers.
Using two methods we show that a quantized discrete breather in a 1D lattice is stable. One method uses path integrals and compares correlations for a (linear) local mode with those of the quantum breather. The other takes a local mode as the zeroth order system relative to which numerical, cutoff-insensitive diagonalization of the Hamiltonian is performed.
متن کاملObtaining breathers in nonlinear Hamiltonian lattices.
We present a numerical method for obtaining high-accuracy numerical solutions of spatially localized time-periodic excitations on a nonlinear Hamiltonian lattice. We compare these results with analytical considerations of the spatial decay. We show that nonlinear contributions have to be considered, and obtain very good agreement between the latter and the numerical results. We discuss further ...
متن کاملBreathers for the Discrete Nonlinear Schrödinger Equation with Nonlinear Hopping
We discuss the existence of breathers and lower bounds on their power, in nonlinear Schrödinger lattices with nonlinear hopping. Our methods extend from a simple variational approach to fixed-point arguments, deriving lower bounds for the power which can serve as a threshold for the existence of breather solutions. Qualitatively, the theoretical results justify non-existence of breathers below ...
متن کاملBreathers in a discrete nonlinear Schrödinger-type model: Exact stability results.
Following our earlier work [Phys. Rev. Lett. 84, 3570 (2000)] we present an exact linear stability analysis of one-site monochromatic breathers in a piecewise smooth discrete nonlinear Schrödinger-type model. Destabilization of the breather occurs by virtue of a growth rate becoming positive as a stability border is crossed, while above a critical spatial decay rate (lambda(c)) the breather is ...
متن کاملNucleation of breathers via stochastic resonance in nonlinear lattices.
By applying a staggered driving force in a prototypical discrete model with a quartic nonlinearity, we demonstrate the spontaneous formation and destruction of discrete breathers with a selected frequency due to thermal fluctuations. The phenomenon exhibits the striking features of stochastic resonance: a nonmonotonic behavior as noise is increased and breather generation under subthreshold con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2018
ISSN: 0022-0396
DOI: 10.1016/j.jde.2017.09.035